Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 062, 7 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.062
(Mi sigma408)
 

This article is cited in 2 scientific papers (total in 2 papers)

On the Moore Formula of Compact Nilmanifolds

H. Hamrouni

Department of Mathematics, Faculty of Sciences at Sfax, Route Soukra, B.P. 1171, 3000 Sfax, Tunisia
Full-text PDF (208 kB) Citations (2)
References:
Abstract: Let $G$ be a connected and simply connected two-step nilpotent Lie group and $\Gamma$ a lattice subgroup of $G$. In this note, we give a new multiplicity formula, according to the sense of Moore, of irreducible unitary representations involved in the decomposition of the quasi-regular representation $\operatorname{Ind}_\Gamma^G(1)$. Extending then the Abelian case.
Keywords: nilpotent Lie group; lattice subgroup; rational structure; unitary representation; Kirillov theory.
Received: December 17, 2008; in final form June 4, 2009; Published online June 15, 2009
Bibliographic databases:
Document Type: Article
MSC: 22E27
Language: English
Citation: H. Hamrouni, “On the Moore Formula of Compact Nilmanifolds”, SIGMA, 5 (2009), 062, 7 pp.
Citation in format AMSBIB
\Bibitem{Ham09}
\by H.~Hamrouni
\paper On the Moore Formula of Compact Nilmanifolds
\jour SIGMA
\yr 2009
\vol 5
\papernumber 062
\totalpages 7
\mathnet{http://mi.mathnet.ru/sigma408}
\crossref{https://doi.org/10.3842/SIGMA.2009.062}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2529185}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900062}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896060139}
Linking options:
  • https://www.mathnet.ru/eng/sigma408
  • https://www.mathnet.ru/eng/sigma/v5/p62
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024