Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 052, 11 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.052
(Mi sigma398)
 

This article is cited in 16 scientific papers (total in 16 papers)

Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model

Nikolay M. Bogolyubov

St. Petersburg Department of V. A. Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
References:
Abstract: The basic model of the non-equilibrium low dimensional physics the so-called totally asymmetric exclusion process is related to the “crystalline limit” ($q\rightarrow\infty$) of the $SU_q(2)$ quantum algebra. Using the quantum inverse scattering method we obtain the exact expression for the time-dependent stationary correlation function of the totally asymmetric simple exclusion process on a one dimensional lattice with the periodic boundary conditions.
Keywords: quantum inverse method; algebraic Bethe ansatz; asymmetric exclusion process.
Received: October 30, 2008; in final form April 14, 2009; Published online April 23, 2009
Bibliographic databases:
Document Type: Article
MSC: 82C23; 81R50
Language: English
Citation: Nikolay M. Bogolyubov, “Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model”, SIGMA, 5 (2009), 052, 11 pp.
Citation in format AMSBIB
\Bibitem{Bog09}
\by Nikolay M.~Bogolyubov
\paper Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model
\jour SIGMA
\yr 2009
\vol 5
\papernumber 052
\totalpages 11
\mathnet{http://mi.mathnet.ru/sigma398}
\crossref{https://doi.org/10.3842/SIGMA.2009.052}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2506160}
\zmath{https://zbmath.org/?q=an:1160.82336}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900052}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79751472160}
Linking options:
  • https://www.mathnet.ru/eng/sigma398
  • https://www.mathnet.ru/eng/sigma/v5/p52
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024