Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 043, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.043
(Mi sigma389)
 

This article is cited in 5 scientific papers (total in 5 papers)

The Analytic Continuation of the Lippmann–Schwinger Eigenfunctions, and Antiunitary Symmetries

Rafael de la Madrid

Department of Physics, The Ohio State University at Newark, Newark, OH 43055 USA
Full-text PDF (287 kB) Citations (5)
References:
Abstract: We review the way to analytically continue the Lippmann–Schwinger bras and kets into the complex plane. We will see that a naive analytic continuation leads to nonsensical results in resonance theory, and we will explain how the non-obvious but correct analytical continuation is done. We will see that the physical basis for the non-obvious but correct analytic continuation lies in the invariance of the Hamiltonian under anti-unitary symmetries such as time reversal or $\mathcal{PT}$.
Keywords: Lippmann–Schwinger equation; resonances; Gamow states; resonant expansions; time reversal; $\mathcal{PT}$ symmetry.
Received: November 7, 2008; in final form March 30, 2009; Published online April 8, 2009
Bibliographic databases:
Document Type: Article
MSC: 81S99; 81U15
Language: English
Citation: Rafael de la Madrid, “The Analytic Continuation of the Lippmann–Schwinger Eigenfunctions, and Antiunitary Symmetries”, SIGMA, 5 (2009), 043, 14 pp.
Citation in format AMSBIB
\Bibitem{De 09}
\by Rafael de la Madrid
\paper The Analytic Continuation of the Lippmann--Schwinger Eigenfunctions, and Antiunitary Symmetries
\jour SIGMA
\yr 2009
\vol 5
\papernumber 043
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma389}
\crossref{https://doi.org/10.3842/SIGMA.2009.043}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2506169}
\zmath{https://zbmath.org/?q=an:1160.81418}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900043}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896060189}
Linking options:
  • https://www.mathnet.ru/eng/sigma389
  • https://www.mathnet.ru/eng/sigma/v5/p43
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024