Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 042, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.042
(Mi sigma388)
 

This article is cited in 23 scientific papers (total in 23 papers)

A Lax Formalism for the Elliptic Difference Painlevé Equation

Yasuhiko Yamada

Department of Mathematics, Faculty of Science, Kobe University, Hyogo 657-8501, Japan
References:
Abstract: A Lax formalism for the elliptic Painlevé equation is presented. The construction is based on the geometry of the curves on $\mathbb P^1\times\mathbb P^1$ and described in terms of the point configurations.
Keywords: elliptic Painlevé equation; Lax formalism; algebraic curves.
Received: November 20, 2008; in final form March 25, 2009; Published online April 8, 2009
Bibliographic databases:
Document Type: Article
MSC: 34A05; 14E07; 14H52
Language: English
Citation: Yasuhiko Yamada, “A Lax Formalism for the Elliptic Difference Painlevé Equation”, SIGMA, 5 (2009), 042, 15 pp.
Citation in format AMSBIB
\Bibitem{Yam09}
\by Yasuhiko Yamada
\paper A~Lax Formalism for the Elliptic Difference Painlev\'e Equation
\jour SIGMA
\yr 2009
\vol 5
\papernumber 042
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma388}
\crossref{https://doi.org/10.3842/SIGMA.2009.042}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2506170}
\zmath{https://zbmath.org/?q=an:1165.39018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900042}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896058613}
Linking options:
  • https://www.mathnet.ru/eng/sigma388
  • https://www.mathnet.ru/eng/sigma/v5/p42
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :89
    References:42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024