Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 036, 21 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.036
(Mi sigma382)
 

This article is cited in 7 scientific papers (total in 7 papers)

Three Natural Generalizations of Fedosov Quantization

Klaus Bering

Institute for Theoretical Physics \& Astrophysics, Masaryk University, Kotlárská 2, CZ-611 37 Brno, Czech Republic
Full-text PDF (327 kB) Citations (7)
References:
Abstract: Fedosov's simple geometrical construction for deformation quantization of symplectic manifolds is generalized in three ways without introducing new variables: (1) The base manifold is allowed to be a supermanifold. (2) The star product does not have to be of Weyl/symmetric or Wick/normal type. (3) The initial geometric structures are allowed to depend on Planck's constant.
Keywords: deformation quantization; Fedosov quantization; star product; supermanifolds; symplectic geometry.
Received: May 19, 2008; in final form February 14, 2009; Published online March 25, 2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: Klaus Bering, “Three Natural Generalizations of Fedosov Quantization”, SIGMA, 5 (2009), 036, 21 pp.
Citation in format AMSBIB
\Bibitem{Ber09}
\by Klaus Bering
\paper Three Natural Generalizations of Fedosov Quantization
\jour SIGMA
\yr 2009
\vol 5
\papernumber 036
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma382}
\crossref{https://doi.org/10.3842/SIGMA.2009.036}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2506176}
\zmath{https://zbmath.org/?q=an:1162.53323}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900036}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-68749109550}
Linking options:
  • https://www.mathnet.ru/eng/sigma382
  • https://www.mathnet.ru/eng/sigma/v5/p36
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024