Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 032, 11 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.032
(Mi sigma378)
 

Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials

Helene Airault

LAMFA CNRS UMR 6140, Insset, Université de Picardie Jules Verne, 48 rue Raspail, 02100 Saint-Quentin (Aisne), France
References:
Abstract: We obtain the Kirillov vector fields on the set of functions $f$ univalent inside the unit disk, in terms of the Faber polynomials of $1/f(1/z)$. Our construction relies on the generating function for Faber polynomials.
Keywords: vector fields; univalent functions; Faber polynomials.
Received: July 17, 2008; in final form March 7, 2009; Published online March 15, 2009
Bibliographic databases:
Document Type: Article
MSC: 17B66; 33C80; 35A30
Language: English
Citation: Helene Airault, “Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials”, SIGMA, 5 (2009), 032, 11 pp.
Citation in format AMSBIB
\Bibitem{Air09}
\by Helene Airault
\paper Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials
\jour SIGMA
\yr 2009
\vol 5
\papernumber 032
\totalpages 11
\mathnet{http://mi.mathnet.ru/sigma378}
\crossref{https://doi.org/10.3842/SIGMA.2009.032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2506180}
\zmath{https://zbmath.org/?q=an:1162.33007}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896062936}
Linking options:
  • https://www.mathnet.ru/eng/sigma378
  • https://www.mathnet.ru/eng/sigma/v5/p32
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:407
    Full-text PDF :100
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024