Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 028, 27 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.028
(Mi sigma374)
 

This article is cited in 5 scientific papers (total in 5 papers)

Hochschild Cohomology and Deformations of Clifford–Weyl Algebras

Ian M. Mussona, Georges Pinczonb, Rosane Ushirobirab

a Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53201-0413, USA
b Institut de Mathématiques de Bourgogne, Université de Bourgogne, B. P. 47870, F-21078 Dijon Cedex, France
Full-text PDF (411 kB) Citations (5)
References:
Abstract: We give a complete study of the Clifford–Weyl algebra $\mathcal C(n,2k)$ from Bose–Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that $\mathcal C(n,2k)$ is rigid when $n$ is even or when $k\neq1$. We find all non-trivial deformations of $\mathcal C(2n+1,2)$ and study their representations.
Keywords: Hochschild cohomology; deformation theory; Clifford algebras; Weyl algebras; Clifford–Weyl algebras; parastatistics.
Received: October 1, 2008; in final form February 25, 2009; Published online March 7, 2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: Ian M. Musson, Georges Pinczon, Rosane Ushirobira, “Hochschild Cohomology and Deformations of Clifford–Weyl Algebras”, SIGMA, 5 (2009), 028, 27 pp.
Citation in format AMSBIB
\Bibitem{MusPinUsh09}
\by Ian M.~Musson, Georges Pinczon, Rosane Ushirobira
\paper Hochschild Cohomology and Deformations of Clifford--Weyl Algebras
\jour SIGMA
\yr 2009
\vol 5
\papernumber 028
\totalpages 27
\mathnet{http://mi.mathnet.ru/sigma374}
\crossref{https://doi.org/10.3842/SIGMA.2009.028}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2506184}
\zmath{https://zbmath.org/?q=an:05555882}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896060247}
Linking options:
  • https://www.mathnet.ru/eng/sigma374
  • https://www.mathnet.ru/eng/sigma/v5/p28
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025