Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 025, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.025
(Mi sigma371)
 

Inversion Formulas for the Spherical Radon–Dunkl Transform

Zhongkai Li, Futao Song

Department of Mathematics, Capital Normal University, Beijing 100048, China
References:
Abstract: The spherical Radon–Dunkl transform $R_{\kappa}$, associated to weight functions invariant under a finite reflection group, is introduced, and some elementary properties are obtained in terms of $h$-harmonics. Several inversion formulas of $R_{\kappa}$ are given with the aid of spherical Riesz–Dunkl potentials, the Dunkl operators, and some appropriate wavelet transforms.
Keywords: spherical Radon–Dunkl transform; $h$-harmonics; inversion formula; wavelet.
Received: October 18, 2008; in final form March 1, 2009; Published online March 3, 2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: Zhongkai Li, Futao Song, “Inversion Formulas for the Spherical Radon–Dunkl Transform”, SIGMA, 5 (2009), 025, 15 pp.
Citation in format AMSBIB
\Bibitem{LiSon09}
\by Zhongkai Li, Futao Song
\paper Inversion Formulas for the Spherical Radon--Dunkl Transform
\jour SIGMA
\yr 2009
\vol 5
\papernumber 025
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma371}
\crossref{https://doi.org/10.3842/SIGMA.2009.025}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2506187}
\zmath{https://zbmath.org/?q=an:1163.44001}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896061023}
Linking options:
  • https://www.mathnet.ru/eng/sigma371
  • https://www.mathnet.ru/eng/sigma/v5/p25
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025