Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 021, 30 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.021
(Mi sigma367)
 

This article is cited in 3 scientific papers (total in 3 papers)

Toeplitz Quantization and Asymptotic Expansions: Geometric Construction

Miroslav Englisab, Harald Upmeierc

a Mathematics Institute, Žitná 25, 11567 Prague 1, Czech Republic
b Mathematics Institute, Silesian University at Opava, Na Rybníčku 1, 74601 Opava, Czech Republic
c Fachbereich Mathematik, Universität Marburg, D-35032 Marburg, Germany
Full-text PDF (383 kB) Citations (3)
References:
Abstract: For a real symmetric domain $G_{\mathbb R}/K_{\mathbb R}$, with complexification $G_{\mathbb C}/K_{\mathbb C}$, we introduce the concept of “star-restriction” (a real analogue of the “star-products” for quantization of Kähler manifolds) and give a geometric construction of the $G_{\mathbb R}$-invariant differential operators yielding its asymptotic expansion.
Keywords: bounded symmetric domain; Toeplitz operator; star product; covariant quantization.
Received: October 1, 2008; in final form February 14, 2009; Published online February 20, 2009
Bibliographic databases:
Document Type: Article
Language: English
Citation: Miroslav Englis, Harald Upmeier, “Toeplitz Quantization and Asymptotic Expansions: Geometric Construction”, SIGMA, 5 (2009), 021, 30 pp.
Citation in format AMSBIB
\Bibitem{EngUpm09}
\by Miroslav Englis, Harald Upmeier
\paper Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
\jour SIGMA
\yr 2009
\vol 5
\papernumber 021
\totalpages 30
\mathnet{http://mi.mathnet.ru/sigma367}
\crossref{https://doi.org/10.3842/SIGMA.2009.021}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2481471}
\zmath{https://zbmath.org/?q=an:1165.53381}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896060268}
Linking options:
  • https://www.mathnet.ru/eng/sigma367
  • https://www.mathnet.ru/eng/sigma/v5/p21
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:335
    Full-text PDF :68
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024