Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 017, 13 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.017
(Mi sigma363)
 

This article is cited in 80 scientific papers (total in 80 papers)

Comments on the Dynamics of the Pais–Uhlenbeck Oscillator

Andrei V. Smilga

SUBATECH, Université de Nantes, 4  rue Alfred Kastler, BP 20722, Nantes 44307, France
References:
Abstract: We discuss the quantum dynamics of the PU oscillator, i.e. the system with the Lagrangian
\begin{gather} \label{1} L=\frac12\left[\ddot q^2-(\Omega_1^2+\Omega_2^2)\dot q^2+\Omega_1^2\Omega_2^2 q\right] \quad(+\text{ nonlinear terms}). \end{gather}
When $\Omega_1\neq\Omega_2$, the free PU oscillator has a pure point spectrum that is dense everywhere. When $\Omega_1=\Omega_2$, the spectrum is continuous, $E\in\{-\infty,\infty\}$. The spectrum is not bounded from below, but that is not disastrous as the Hamiltonian is Hermitian and the evolution operator is unitary. Generically, the inclusion of interaction terms breaks unitarity, but in some special cases unitarity is preserved. We discuss also the nonstandard realization of the PU oscillator suggested by Bender and Mannheim, where the spectrum of the free Hamiltonian is positive definite, but wave functions grow exponentially for large real values of canonical coordinates. The free nonstandard PU oscillator is unitary at $\Omega_1\neq\Omega_2$, but unitarity is broken in the equal frequencies limit.
Keywords: higher derivatives; ghosts; unitarity.
Received: November 24, 2008; in final form February 5, 2009; Published online February 12, 2009
Bibliographic databases:
Document Type: Article
MSC: 70H50; 70H14
Language: English
Citation: Andrei V. Smilga, “Comments on the Dynamics of the Pais–Uhlenbeck Oscillator”, SIGMA, 5 (2009), 017, 13 pp.
Citation in format AMSBIB
\Bibitem{Smi09}
\by Andrei V.~Smilga
\paper Comments on the Dynamics of the Pais--Uhlenbeck Oscillator
\jour SIGMA
\yr 2009
\vol 5
\papernumber 017
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma363}
\crossref{https://doi.org/10.3842/SIGMA.2009.017}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2481475}
\zmath{https://zbmath.org/?q=an:05555893}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900017}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78449293149}
Linking options:
  • https://www.mathnet.ru/eng/sigma363
  • https://www.mathnet.ru/eng/sigma/v5/p17
  • This publication is cited in the following 80 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:515
    Full-text PDF :138
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024