Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 015, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.015
(Mi sigma361)
 

This article is cited in 4 scientific papers (total in 4 papers)

The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space

Armen G. Sergeev

Steklov Mathematical Institute, 8 Gubkina Str., 119991 Moscow, Russia
Full-text PDF (297 kB) Citations (4)
References:
Abstract: In the first part of the paper we describe the complex geometry of the universal Teichmüller space $\mathcal T$, which may be realized as an open subset in the complex Banach space of holomorphic quadratic differentials in the unit disc. The quotient $\mathcal S$ of the diffeomorphism group of the circle modulo Möbius transformations may be treated as a smooth part of $\mathcal T$. In the second part we consider the quantization of universal Teichmüller space $\mathcal T$. We explain first how to quantize the smooth part $\mathcal S$ by embedding it into a Hilbert–Schmidt Siegel disc. This quantization method, however, does not apply to the whole universal Teichmüller space $\mathcal T$, for its quantization we use an approach, due to Connes.
Keywords: universal Teichmüller space; quasisymmetric homeomorphisms; Connes quantization.
Received: July 29, 2008; in final form February 5, 2009; Published online February 8, 2009
Bibliographic databases:
Document Type: Article
MSC: 58E20; 53C28; 32L25
Language: English
Citation: Armen G. Sergeev, “The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichmüller Space”, SIGMA, 5 (2009), 015, 20 pp.
Citation in format AMSBIB
\Bibitem{Ser09}
\by Armen G.~Sergeev
\paper The Group of Quasisymmetric Homeomorphisms of the Circle and Quantization of the Universal Teichm\"uller Space
\jour SIGMA
\yr 2009
\vol 5
\papernumber 015
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma361}
\crossref{https://doi.org/10.3842/SIGMA.2009.015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2481477}
\zmath{https://zbmath.org/?q=an:1165.53379}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896058806}
Linking options:
  • https://www.mathnet.ru/eng/sigma361
  • https://www.mathnet.ru/eng/sigma/v5/p15
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:441
    Full-text PDF :95
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024