Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 012, 27 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.012
(Mi sigma358)
 

This article is cited in 10 scientific papers (total in 10 papers)

Hecke–Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type

Ta Khongsap, Weiqiang Wang

Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA
References:
Abstract: We introduce an odd double affine Hecke algebra (DaHa) generated by a classical Weyl group $W$ and two skew-polynomial subalgebras of anticommuting generators. This algebra is shown to be Morita equivalent to another new DaHa which are generated by $W$ and two polynomial-Clifford subalgebras. There is yet a third algebra containing a spin Weyl group algebra which is Morita (super)equivalent to the above two algebras. We establish the PBW properties and construct Verma-type representations via Dunkl operators for these algebras.
Keywords: spin Hecke algebras; Hecke–Clifford algebras; Dunkl operators.
Received: October 15, 2008; in final form January 22, 2009; Published online January 28, 2009
Bibliographic databases:
Document Type: Article
MSC: 20C08
Language: English
Citation: Ta Khongsap, Weiqiang Wang, “Hecke–Clifford Algebras and Spin Hecke Algebras IV: Odd Double Affine Type”, SIGMA, 5 (2009), 012, 27 pp.
Citation in format AMSBIB
\Bibitem{KhoWan09}
\by Ta Khongsap, Weiqiang Wang
\paper Hecke--Clifford Algebras and Spin Hecke Algebras~IV: Odd Double Affine Type
\jour SIGMA
\yr 2009
\vol 5
\papernumber 012
\totalpages 27
\mathnet{http://mi.mathnet.ru/sigma358}
\crossref{https://doi.org/10.3842/SIGMA.2009.012}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2481480}
\zmath{https://zbmath.org/?q=an:05555898}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896062063}
Linking options:
  • https://www.mathnet.ru/eng/sigma358
  • https://www.mathnet.ru/eng/sigma/v5/p12
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:577
    Full-text PDF :57
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024