Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2009, Volume 5, 003, 37 pp.
DOI: https://doi.org/10.3842/SIGMA.2009.003
(Mi sigma349)
 

This article is cited in 32 scientific papers (total in 32 papers)

Quiver Varieties and Branching

Hiraku Nakajima

Kyoto University
References:
Abstract: Braverman and Finkelberg recently proposed the geometric Satake correspondence for the affine Kac–Moody group $G_\mathrm{aff}$ [Braverman A., Finkelberg M., arXiv:0711.2083]. They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of $G_{\mathrm{cpt}}$-instantons on $\mathbb R^4/\mathbb Z_r$ correspond to weight spaces of representations of the Langlands dual group $G_{\mathrm{aff}}^\vee$ at level $r$. When $G=\operatorname{SL}(l)$, the Uhlenbeck compactification is the quiver variety of type $\mathfrak{sl}(r)_{\mathrm{aff}}$, and their conjecture follows from the author's earlier result and I. Frenkel's level-rank duality. They further introduce a convolution diagram which conjecturally gives the tensor product multiplicity [Braverman A., Finkelberg M., Private communication, 2008]. In this paper, we develop the theory for the branching in quiver varieties and check this conjecture for $G=\operatorname{SL}(l)$.
Keywords: quiver variety; geometric Satake correspondence; affine Lie algebra; intersection cohomology.
Received: September 15, 2008; in final form January 5, 2009; Published online January 11, 2009
Bibliographic databases:
Document Type: Article
MSC: 17B65; 14D21
Language: English
Citation: Hiraku Nakajima, “Quiver Varieties and Branching”, SIGMA, 5 (2009), 003, 37 pp.
Citation in format AMSBIB
\Bibitem{Nak09}
\by Hiraku Nakajima
\paper Quiver Varieties and Branching
\jour SIGMA
\yr 2009
\vol 5
\papernumber 003
\totalpages 37
\mathnet{http://mi.mathnet.ru/sigma349}
\crossref{https://doi.org/10.3842/SIGMA.2009.003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2470410}
\zmath{https://zbmath.org/?q=an:05555907}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055180355}
Linking options:
  • https://www.mathnet.ru/eng/sigma349
  • https://www.mathnet.ru/eng/sigma/v5/p3
  • This publication is cited in the following 32 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:419
    Full-text PDF :82
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024