Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2006, Volume 2, 006, 60 pp.
DOI: https://doi.org/10.3842/SIGMA.2006.006
(Mi sigma34)
 

This article is cited in 72 scientific papers (total in 72 papers)

Orbit Functions

Anatoliy Klimyka, Jiri Paterab

a Bogolyubov Institute for Theoretical Physics, 14-b Metrologichna Str., Kyiv, 03143 Ukraine
b Centre de Recherches Mathématiques, Université de Montréal, C.P.6128-Centre ville, Montréal, H3C3J7, Québec, Canada
References:
Abstract: In the paper, properties of orbit functions are reviewed and further developed. Orbit functions on the Euclidean space $E_n$ are symmetrized exponential functions. The symmetrization is fulfilled by a Weyl group corresponding to a Coxeter–Dynkin diagram. Properties of such functions will be described. An orbit function is the contribution to an irreducible character of a compact semisimple Lie group $G$ of rank $n$ from one of its Weyl group orbits. It is shown that values of orbit functions are repeated on copies of the fundamental domain $F$ of the affine Weyl group (determined by the initial Weyl group) in the entire Euclidean space $E_n$. Orbit functions are solutions of the corresponding Laplace equation in $E_n$, satisfying the Neumann condition on the boundary of $F$. Orbit functions determine a symmetrized Fourier transform and a transform on a finite set of points.
Keywords: orbit functions; Coxeter–Dynkin diagram; Weyl group; orbits; products of orbits; orbit function transform; finite orbit function transform; Neumann boundary problem; symmetric polynomials.
Received: January 4, 2006; Published online January 19, 2006
Bibliographic databases:
Document Type: Article
Language: English
Citation: Anatoliy Klimyk, Jiri Patera, “Orbit Functions”, SIGMA, 2 (2006), 006, 60 pp.
Citation in format AMSBIB
\Bibitem{KliPat06}
\by Anatoliy Klimyk, Jiri Patera
\paper Orbit Functions
\jour SIGMA
\yr 2006
\vol 2
\papernumber 006
\totalpages 60
\mathnet{http://mi.mathnet.ru/sigma34}
\crossref{https://doi.org/10.3842/SIGMA.2006.006}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2194213}
\zmath{https://zbmath.org/?q=an:1118.33004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236313}
Linking options:
  • https://www.mathnet.ru/eng/sigma34
  • https://www.mathnet.ru/eng/sigma/v2/p6
  • This publication is cited in the following 72 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:432
    Full-text PDF :84
    References:72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024