Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 085, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.085
(Mi sigma338)
 

This article is cited in 4 scientific papers (total in 5 papers)

String Functions for Affine Lie Algebras Integrable Modules

Petr Kulisha, Vladimir Lyakhovskyb

a Sankt-Petersburg Department of Steklov Institute of Mathematics, Fontanka 27, 191023, Sankt-Petersburg, Russia
b Department of Theoretical Physics, Sankt-Petersburg State University, 1 Ulyanovskaya Str., Petergof, 198904, Sankt-Petersburg, Russia
Full-text PDF (299 kB) Citations (5)
References:
Abstract: The recursion relations of branching coefficients $k_{\xi}^{(\mu)}$ for a module $L_{\mathfrak g\downarrow\mathfrak h}^\mu$ reduced to a Cartan subalgebra $\mathfrak h$ are transformed in order to place the recursion shifts $\gamma\in\Gamma _{\mathfrak a\subset\mathfrak h}$ into the fundamental Weyl chamber. The new ensembles $F\Psi$ (the “folded fans”) of shifts were constructed and the corresponding recursion properties for the weights belonging to the fundamental Weyl chamber were formulated. Being considered simultaneously for the set of string functions (corresponding to the same congruence class $\Xi_{v}$ of modules) the system of recursion relations constitute an equation $\mathbf M_{(u)}^{\Xi _v}\mathbf{m}_{(u)}^{\mu}={\boldsymbol\delta}_{(u)}^{\mu}$ where the operator $\mathbf M_{(u)}^{\Xi _v}$ is an invertible matrix whose elements are defined by the coordinates and multiplicities of the shift weights in the folded fans $F\Psi$ and the components of the vector $\mathbf m_{(u)}^\mu$ are the string function coefficients for $L^\mu$ enlisted up to an arbitrary fixed grade $u$. The examples are presented where the string functions for modules of $\mathfrak g=A_2^{(1)}$ are explicitly constructed demonstrating that the set of folded fans provides a compact and effective tool to study the integrable highest weight modules.
Keywords: affine Lie algebras; integrable modules; string functions.
Received: September 15, 2008; in final form December 4, 2008; Published online December 12, 2008
Bibliographic databases:
Document Type: Article
MSC: 17B10; 17B67
Language: English
Citation: Petr Kulish, Vladimir Lyakhovsky, “String Functions for Affine Lie Algebras Integrable Modules”, SIGMA, 4 (2008), 085, 18 pp.
Citation in format AMSBIB
\Bibitem{KulLya08}
\by Petr Kulish, Vladimir Lyakhovsky
\paper String Functions for Affine Lie Algebras Integrable Modules
\jour SIGMA
\yr 2008
\vol 4
\papernumber 085
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma338}
\crossref{https://doi.org/10.3842/SIGMA.2008.085}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2470511}
\zmath{https://zbmath.org/?q=an:05555827}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800085}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234751}
Linking options:
  • https://www.mathnet.ru/eng/sigma338
  • https://www.mathnet.ru/eng/sigma/v4/p85
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:326
    Full-text PDF :53
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024