Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 084, 22 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.084
(Mi sigma337)
 

This article is cited in 3 scientific papers (total in 3 papers)

Dunkl Hyperbolic Equations

Hatem Mejjaoli

Faculty of Sciences of Tunis, Department of Mathematics, 1060 Tunis, Tunisia
Full-text PDF (309 kB) Citations (3)
References:
Abstract: We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.
Keywords: Dunkl operators; Dunkl symmetric systems; energy estimates; finite speed of propagation; Dunkl-wave equations with variable coefficients.
Received: May 10, 2008; in final form November 24, 2008; Published online December 11, 2008
Bibliographic databases:
Document Type: Article
MSC: 35L05; 22E30
Language: English
Citation: Hatem Mejjaoli, “Dunkl Hyperbolic Equations”, SIGMA, 4 (2008), 084, 22 pp.
Citation in format AMSBIB
\Bibitem{Mej08}
\by Hatem Mejjaoli
\paper Dunkl Hyperbolic Equations
\jour SIGMA
\yr 2008
\vol 4
\papernumber 084
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma337}
\crossref{https://doi.org/10.3842/SIGMA.2008.084}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2470512}
\zmath{https://zbmath.org/?q=an:05555828}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800084}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234810}
Linking options:
  • https://www.mathnet.ru/eng/sigma337
  • https://www.mathnet.ru/eng/sigma/v4/p84
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024