Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 083, 9 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.083
(Mi sigma336)
 

This article is cited in 6 scientific papers (total in 6 papers)

A Limit Relation for Dunkl–Bessel Functions of Type A and B

Margit Röslera, Michael Voitb

a Institut für Mathematik, TU Clausthal, Erzstr. 1, D-38678 Clausthal-Zellerfeld, Germany
b Fachbereich Mathematik, TU Dortmund, Vogelpothsweg 87, D-44221 Dortmund, Germany
Full-text PDF (241 kB) Citations (6)
References:
Abstract: We prove a limit relation for the Dunkl–Bessel function of type $B_N$ with multiplicity parameters $k_1$ on the roots $\pm e_i$ and $k_2$ on $\pm e_i\pm e_j$ where $k_1$ tends to infinity and the arguments are suitably scaled. It gives a good approximation in terms of the Dunkl-type Bessel function of type $A_{N-1}$ with multiplicity $k_2$. For certain values of $k_2$ an improved estimate is obtained from a corresponding limit relation for Bessel functions on matrix cones.
Keywords: Bessel functions; Dunkl operators; asymptotics.
Received: October 21, 2008; in final form November 26, 2008; Published online December 3, 2008
Bibliographic databases:
Document Type: Article
MSC: 33C67; 43A85; 20F55
Language: English
Citation: Margit Rösler, Michael Voit, “A Limit Relation for Dunkl–Bessel Functions of Type A and B”, SIGMA, 4 (2008), 083, 9 pp.
Citation in format AMSBIB
\Bibitem{RosVoi08}
\by Margit R\"osler, Michael Voit
\paper A~Limit Relation for Dunkl--Bessel Functions of Type~A and~B
\jour SIGMA
\yr 2008
\vol 4
\papernumber 083
\totalpages 9
\mathnet{http://mi.mathnet.ru/sigma336}
\crossref{https://doi.org/10.3842/SIGMA.2008.083}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2470513}
\zmath{https://zbmath.org/?q=an:1163.33314}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800083}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876795461}
Linking options:
  • https://www.mathnet.ru/eng/sigma336
  • https://www.mathnet.ru/eng/sigma/v4/p83
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:845
    Full-text PDF :38
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024