Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 080, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.080
(Mi sigma333)
 

This article is cited in 16 scientific papers (total in 16 papers)

Analyticity of the Free Energy of a Closed 3-Manifold

Stavros Garoufalidisa, Thang T. Q. Lêa, Marcos Mariñob

a School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA
b Section de Mathématiques, Université de Genève, CH-1211 Genève 4, Switzerland
References:
Abstract: The free energy of a closed 3-manifold is a 2-parameter formal power series which encodes the perturbative Chern–Simons invariant (also known as the LMO invariant) of a closed 3-manifold with gauge group $U(N)$ for arbitrary $N$. We prove that the free energy of an arbitrary closed 3-manifold is uniformly Gevrey-$1$. As a corollary, it follows that the genus $g$ part of the free energy is convergent in a neighborhood of zero, independent of the genus. Our results follow from an estimate of the LMO invariant, in a particular gauge, and from recent results of Bender–Gao–Richmond on the asymptotics of the number of rooted maps for arbitrary genus. We illustrate our results with an explicit formula for the free energy of a Lens space. In addition, using the Painlevé differential equation, we obtain an asymptotic expansion for the number of cubic graphs to all orders, stengthening the results of Bender–Gao–Richmond.
Keywords: Chern–Simons theory; perturbation theory; gauge theory; free energy; planar limit; Gevrey series; LMO invariant; weight systems; ribbon graphs; cubic graphs; lens spaces; trilogarithm; polylogarithm; Painlevé I; WKB; asymptotic expansions; transseries; Riemann–Hilbert problem.
Received: September 15, 2008; in final form November 6, 2008; Published online November 15, 2008
Bibliographic databases:
Document Type: Article
MSC: 57N10; 57M25
Language: English
Citation: Stavros Garoufalidis, Thang T. Q. Lê, Marcos Mariño, “Analyticity of the Free Energy of a Closed 3-Manifold”, SIGMA, 4 (2008), 080, 20 pp.
Citation in format AMSBIB
\Bibitem{GarLe Mar08}
\by Stavros Garoufalidis, Thang T.~Q.~L\^e, Marcos Mari\~no
\paper Analyticity of the Free Energy of a~Closed 3-Manifold
\jour SIGMA
\yr 2008
\vol 4
\papernumber 080
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma333}
\crossref{https://doi.org/10.3842/SIGMA.2008.080}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2470516}
\zmath{https://zbmath.org/?q=an:05555832}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800080}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236041}
Linking options:
  • https://www.mathnet.ru/eng/sigma333
  • https://www.mathnet.ru/eng/sigma/v4/p80
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024