Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 079, 12 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.079
(Mi sigma332)
 

This article is cited in 2 scientific papers (total in 2 papers)

Non-Gatherable Triples for Non-Affine Root Systems

Ivan Cherednik, Keith Schneider

Department of Mathematics, UNC Chapel Hill, North Carolina 27599, USA
Full-text PDF (316 kB) Citations (2)
References:
Abstract: This paper contains a complete description of minimal non-gatherable triangle triples in the lambda-sequences for the classical root systems, $F_4$ and $E_6$. Such sequences are associated with reduced decompositions (words) in affine and non-affine Weyl groups. The existence of the non-gatherable triples is a combinatorial obstacle for using the technique of intertwiners for an explicit description of the irreducible representations of the (double) affine Hecke algebras, complementary to their algebraic-geometric theory.
Keywords: root systems; Weyl groups; reduced decompositions.
Received: September 3, 2008; in final form November 8, 2008; Published online November 14, 2008
Bibliographic databases:
Document Type: Article
MSC: 20H15; 20F55
Language: English
Citation: Ivan Cherednik, Keith Schneider, “Non-Gatherable Triples for Non-Affine Root Systems”, SIGMA, 4 (2008), 079, 12 pp.
Citation in format AMSBIB
\Bibitem{CheSch08}
\by Ivan Cherednik, Keith Schneider
\paper Non-Gatherable Triples for Non-Affine Root Systems
\jour SIGMA
\yr 2008
\vol 4
\papernumber 079
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma332}
\crossref{https://doi.org/10.3842/SIGMA.2008.079}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2470517}
\zmath{https://zbmath.org/?q=an:05555833}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800079}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889235144}
Linking options:
  • https://www.mathnet.ru/eng/sigma332
  • https://www.mathnet.ru/eng/sigma/v4/p79
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:267
    Full-text PDF :48
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024