Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 076, 6 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.076
(Mi sigma329)
 

This article is cited in 3 scientific papers (total in 3 papers)

Liouville Theorem for Dunkl Polyharmonic Functions

Guangbin Renab, Liang Liub

a Departamento de Matemática, Universidade de Aveiro, P-3810-193, Aveiro, Portugal
b Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
Full-text PDF (187 kB) Citations (3)
References:
Abstract: Assume that $f$ is Dunkl polyharmonic in $\mathbb R^n$ (i.e. $(\Delta_h)^p f=0$ for some integer $p$, where $\Delta_h$ is the Dunkl Laplacian associated to a root system $R$ and to a multiplicity function $\kappa$, defined on $R$ and invariant with respect to the finite Coxeter group).
Necessary and successful condition that $f$ is a polynomial of degree $\le s$ for $s\ge 2p-2$ is proved. As a direct corollary, a Dunkl harmonic function bounded above or below is constant.
Keywords: Liouville theorem; Dunkl Laplacian; polyharmonic functions.
Received: July 3, 2008; in final form October 30, 2008; Published online November 6, 2008
Bibliographic databases:
Document Type: Article
MSC: 33C52; 31A30; 35C10
Language: English
Citation: Guangbin Ren, Liang Liu, “Liouville Theorem for Dunkl Polyharmonic Functions”, SIGMA, 4 (2008), 076, 6 pp.
Citation in format AMSBIB
\Bibitem{RenLiu08}
\by Guangbin Ren, Liang Liu
\paper Liouville Theorem for Dunkl Polyharmonic Functions
\jour SIGMA
\yr 2008
\vol 4
\papernumber 076
\totalpages 6
\mathnet{http://mi.mathnet.ru/sigma329}
\crossref{https://doi.org/10.3842/SIGMA.2008.076}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2470520}
\zmath{https://zbmath.org/?q=an:1163.33311}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800076}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236090}
Linking options:
  • https://www.mathnet.ru/eng/sigma329
  • https://www.mathnet.ru/eng/sigma/v4/p76
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:249
    Full-text PDF :41
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024