Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 070, 21 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.070
(Mi sigma323)
 

This article is cited in 7 scientific papers (total in 7 papers)

The PBW Filtration, Demazure Modules and Toroidal Current Algebras

Evgeny Feiginab

a I. E. Tamm Department of Theoretical Physics, Lebedev Physics Institute, Leninski Prospect 53, Moscow, 119991, Russia
b Mathematical Institute, University of Cologne, Weyertal 86-90, D-50931, Cologne, Germany
Full-text PDF (332 kB) Citations (7)
References:
Abstract: Let $L$ be the basic (level one vacuum) representation of the affine Kac–Moody Lie algebra $\widehat{\mathfrak g}$. The $m$-th space $F_m$ of the PBW filtration on $L$ is a linear span of vectors of the form $x_1\cdots x_lv_0$, where $l\le m$, $x_i\in\widehat{\mathfrak g}$ and $v_0$ is a highest weight vector of $L$. In this paper we give two descriptions of the associated graded space $L^{\mathrm{gr}}$ with respect to the PBW filtration. The “top-down” description deals with a structure of $L^{\mathrm{gr}}$ as a representation of the abelianized algebra of generating operators. We prove that the ideal of relations is generated by the coefficients of the squared field $e_\theta(z)^2$, which corresponds to the longest root $\theta$. The “bottom-up” description deals with the structure of $L^{\mathrm{gr}}$ as a representation of the current algebra $\mathfrak g\otimes\mathbb C[t]$. We prove that each quotient $F_m/F_{m-1}$ can be filtered by graded deformations of the tensor products of $m$ copies of $\mathfrak g$.
Keywords: affine Kac–Moody algebras; integrable representations; Demazure modules.
Received: July 4, 2008; in final form October 6, 2008; Published online October 14, 2008
Bibliographic databases:
Document Type: Article
MSC: 17B67
Language: English
Citation: Evgeny Feigin, “The PBW Filtration, Demazure Modules and Toroidal Current Algebras”, SIGMA, 4 (2008), 070, 21 pp.
Citation in format AMSBIB
\Bibitem{Fei08}
\by Evgeny Feigin
\paper The PBW Filtration, Demazure Modules and Toroidal Current Algebras
\jour SIGMA
\yr 2008
\vol 4
\papernumber 070
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma323}
\crossref{https://doi.org/10.3842/SIGMA.2008.070}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2470526}
\zmath{https://zbmath.org/?q=an:05555842}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800070}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84896060542}
Linking options:
  • https://www.mathnet.ru/eng/sigma323
  • https://www.mathnet.ru/eng/sigma/v4/p70
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024