Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 066, 13 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.066
(Mi sigma319)
 

This article is cited in 3 scientific papers (total in 3 papers)

Hochschild Cohomology Theories in White Noise Analysis

Rémi Léandre

Institut de Mathématiques de Bourgogne, Université de Bourgogne, 21000, Dijon, France
Full-text PDF (242 kB) Citations (3)
References:
Abstract: We show that the continuous Hochschild cohomology and the differential Hochschild cohomology of the Hida test algebra endowed with the normalized Wick product are the same.
Keywords: white noise analysis; Hochschild cohomology.
Received: June 18, 2008; in final form September 8, 2008; Published online September 27, 2008
Bibliographic databases:
Document Type: Article
MSC: 53D55; 60H40
Language: English
Citation: Rémi Léandre, “Hochschild Cohomology Theories in White Noise Analysis”, SIGMA, 4 (2008), 066, 13 pp.
Citation in format AMSBIB
\Bibitem{Lea08}
\by R\'emi L\'eandre
\paper Hochschild Cohomology Theories in White Noise Analysis
\jour SIGMA
\yr 2008
\vol 4
\papernumber 066
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma319}
\crossref{https://doi.org/10.3842/SIGMA.2008.066}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2470530}
\zmath{https://zbmath.org/?q=an:1162.53328}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800066}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236601}
Linking options:
  • https://www.mathnet.ru/eng/sigma319
  • https://www.mathnet.ru/eng/sigma/v4/p66
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:202
    Full-text PDF :49
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024