Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 057, 35 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.057
(Mi sigma310)
 

This article is cited in 4 scientific papers (total in 4 papers)

On Griess Algebras

Michael Roitman

Department of Mathematics, Kansas State University, Manhattan, KS 66506 USA
Full-text PDF (531 kB) Citations (4)
References:
Abstract: In this paper we prove that for any commutative (but in general non-associative) algebra $A$ with an invariant symmetric non-degenerate bilinear form there is a graded vertex algebra $V=V_0\oplus V_2\oplus V_3\oplus\cdots$, such that $\dim V_0=1$ and $V_2$ contains $A$. We can choose $V$ so that if $A$ has a unit $e$, then $2e$ is the Virasoro element of $V$, and if $G$ is a finite group of automorphisms of $A$, then $G$ acts on $V$ as well. In addition, the algebra $V$ can be chosen with a non-degenerate invariant bilinear form, in which case it is simple.
Keywords: vertex algebra; Griess algebra.
Received: February 29, 2008; in final form July 28, 2008; Published online August 13, 2008
Bibliographic databases:
Document Type: Article
MSC: 17B69
Language: English
Citation: Michael Roitman, “On Griess Algebras”, SIGMA, 4 (2008), 057, 35 pp.
Citation in format AMSBIB
\Bibitem{Roi08}
\by Michael Roitman
\paper On Griess Algebras
\jour SIGMA
\yr 2008
\vol 4
\papernumber 057
\totalpages 35
\mathnet{http://mi.mathnet.ru/sigma310}
\crossref{https://doi.org/10.3842/SIGMA.2008.057}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2434941}
\zmath{https://zbmath.org/?q=an:05555855}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800057}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234666}
Linking options:
  • https://www.mathnet.ru/eng/sigma310
  • https://www.mathnet.ru/eng/sigma/v4/p57
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024