Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 054, 12 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.054
(Mi sigma307)
 

This article is cited in 11 scientific papers (total in 11 papers)

Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics

Dieter Schucha, Marcos Moshinskyb

a Institut für Theoretische Physik, Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main, Germany
b Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F., México
References:
Abstract: For classical canonical transformations, one can, using the Wigner transformation, pass from their representation in Hilbert space to a kernel in phase space. In this paper it will be discussed how the time-dependence of the uncertainties of the corresponding time-dependent quantum problems can be incorporated into this formalism.
Keywords: canonical transformations; Wigner function; time-dependent quantum mechanics; quantum uncertainties.
Received: February 6, 2008; in final form June 8, 2008; Published online July 14, 2008
Bibliographic databases:
Document Type: Article
Language: English
Citation: Dieter Schuch, Marcos Moshinsky, “Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics”, SIGMA, 4 (2008), 054, 12 pp.
Citation in format AMSBIB
\Bibitem{SchMos08}
\by Dieter Schuch, Marcos Moshinsky
\paper Wigner Distribution Functions and the Representation of Canonical Transformations in Time-Dependent Quantum Mechanics
\jour SIGMA
\yr 2008
\vol 4
\papernumber 054
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma307}
\crossref{https://doi.org/10.3842/SIGMA.2008.054}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2425638}
\zmath{https://zbmath.org/?q=an:1154.81351}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800054}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236414}
Linking options:
  • https://www.mathnet.ru/eng/sigma307
  • https://www.mathnet.ru/eng/sigma/v4/p54
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:767
    Full-text PDF :63
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024