Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 033, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.033
(Mi sigma286)
 

This article is cited in 4 scientific papers (total in 4 papers)

The Fundamental $k$-Form and Global Relations

Anthony C. L. Ashton

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK
Full-text PDF (250 kB) Citations (4)
References:
Abstract: In [Proc. Roy. Soc. London Ser. A 453 (1997), no. 1962, 1411–1443] A. S. Fokas introduced a novel method for solving a large class of boundary value problems associated with evolution equations. This approach relies on the construction of a so-called global relation: an integral expression that couples initial and boundary data. The global relation can be found by constructing a differential form dependent on some spectral parameter, that is closed on the condition that a given partial differential equation is satisfied. Such a diferential form is said to be fundamental [Quart. J. Mech. Appl. Math. 55 (2002), 457–479]. We give an algorithmic approach in constructing a fundamental $k$-form associated with a given boundary value problem, and address issues of uniqueness. Also, we extend a result of Fokas and Zyskin to give an integral representation to the solution of a class of boundary value problems, in an arbitrary number of dimensions. We present an extended example using these results in which we construct a global relation for the linearised Navier–Stokes equations.
Keywords: fundamental $k$-form; global relation; boundary value problems.
Received: December 20, 2007; in final form March 3, 2008; Published online March 20, 2008
Bibliographic databases:
Document Type: Article
MSC: 30E25; 35E99; 35P05
Language: English
Citation: Anthony C. L. Ashton, “The Fundamental $k$-Form and Global Relations”, SIGMA, 4 (2008), 033, 15 pp.
Citation in format AMSBIB
\Bibitem{Ash08}
\by Anthony C.~L.~Ashton
\paper The Fundamental $k$-Form and Global Relations
\jour SIGMA
\yr 2008
\vol 4
\papernumber 033
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma286}
\crossref{https://doi.org/10.3842/SIGMA.2008.033}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2393294}
\zmath{https://zbmath.org/?q=an:05309259}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800033}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857303355}
Linking options:
  • https://www.mathnet.ru/eng/sigma286
  • https://www.mathnet.ru/eng/sigma/v4/p33
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:176
    Full-text PDF :49
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024