Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 032, 13 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.032
(Mi sigma285)
 

Equivariance, Variational Principles, and the Feynman Integral

George Svetlichny

Departamento de Matemática, Pontifícia Unversidade Católica, Rio de Janeiro, Brazil
References:
Abstract: We argue that the variational calculus leading to Euler's equations and Noether's theorem can be replaced by equivariance and invariance conditions avoiding the action integral. We also speculate about the origin of Lagrangian theories in physics and their connection to Feynman's integral.
Keywords: Lagrangians; calculus of variations; Euler's equations; Noether's theorem; equivariance; Feynman's integral.
Received: November 2, 2007; in final form March 13, 2008; Published online March 19, 2008
Bibliographic databases:
Document Type: Article
Language: English
Citation: George Svetlichny, “Equivariance, Variational Principles, and the Feynman Integral”, SIGMA, 4 (2008), 032, 13 pp.
Citation in format AMSBIB
\Bibitem{Sve08}
\by George Svetlichny
\paper Equivariance, Variational Principles, and the Feynman Integral
\jour SIGMA
\yr 2008
\vol 4
\papernumber 032
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma285}
\crossref{https://doi.org/10.3842/SIGMA.2008.032}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2393295}
\zmath{https://zbmath.org/?q=an:05309260}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857293658}
Linking options:
  • https://www.mathnet.ru/eng/sigma285
  • https://www.mathnet.ru/eng/sigma/v4/p32
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025