Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 029, 30 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.029
(Mi sigma282)
 

This article is cited in 11 scientific papers (total in 11 papers)

Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type

Vladimir S. Gerdjikov, Nikolay A. Kostov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 Tsarigradsko chaussee, 1784 Sofia, Bulgaria
References:
Abstract: New reductions for the multicomponent modified Korteweg–de Vries (MMKdV) equations on the symmetric spaces of DIII-type are derived using the approach based on the reduction group introduced by A. V. Mikhailov. The relevant inverse scattering problem is studied and reduced to a Riemann–Hilbert problem. The minimal sets of scattering data $\mathcal T_i$, $i=1,2$ which allow one to reconstruct uniquely both the scattering matrix and the potential of the Lax operator are defined. The effect of the new reductions on the hierarchy of Hamiltonian structures of MMKdV and on $\mathcal T_i$ are studied. We illustrate our results by the MMKdV equations related to the algebra $\mathfrak g\simeq so(8)$ and derive several new MMKdV-type equations using group of reductions isomorphic to $\mathbb Z_2$, $\mathbb Z_3$, $\mathbb Z_4$.
Keywords: multicomponent modified Korteweg–de Vries (MMKdV) equations; reduction group; Riemann–Hilbert problem; Hamiltonian structures.
Received: December 14, 2007; in final form February 27, 2008; Published online March 11, 2008
Bibliographic databases:
Document Type: Article
Language: English
Citation: Vladimir S. Gerdjikov, Nikolay A. Kostov, “Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type”, SIGMA, 4 (2008), 029, 30 pp.
Citation in format AMSBIB
\Bibitem{GerKos08}
\by Vladimir S.~Gerdjikov, Nikolay A.~Kostov
\paper Reductions of Multicomponent mKdV Equations on Symmetric Spaces of DIII-Type
\jour SIGMA
\yr 2008
\vol 4
\papernumber 029
\totalpages 30
\mathnet{http://mi.mathnet.ru/sigma282}
\crossref{https://doi.org/10.3842/SIGMA.2008.029}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2393298}
\zmath{https://zbmath.org/?q=an:1157.37335}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84857325117}
Linking options:
  • https://www.mathnet.ru/eng/sigma282
  • https://www.mathnet.ru/eng/sigma/v4/p29
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :55
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024