Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 021, 46 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.021
(Mi sigma274)
 

This article is cited in 8 scientific papers (total in 8 papers)

On Parametrization of the Linear $\mathrm{GL}(4,C)$ and Unitary $\mathrm{SU}(4)$ Groups in Terms of Dirac Matrices

Victor M. Red'kov, Andrei A. Bogush, Natalia G. Tokarevskaya

B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
Full-text PDF (467 kB) Citations (8)
References:
Abstract: Parametrization of $4\times 4$-matrices $G$ of the complex linear group $GL(4,C)$ in terms of four complex 4-vector parameters $(k,m,n,l)$ is investigated. Additional restrictions separating some subgroups of $GL(4,C)$ are given explicitly. In the given parametrization, the problem of inverting any $4\times4$ matrix $G$ is solved. Expression for determinant of any matrix $G$ is found: $\det G=F(k,m,n,l)$. Unitarity conditions $G^+=G^{-1}$ have been formulated in the form of non-linear cubic algebraic equations including complex conjugation. Several simplest solutions of these unitarity equations have been found: three 2-parametric subgroups $G_1$, $G_2$, $G_3$ – each of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup consisting of a product of a 3-parametric group isomorphic $SU(2)$ and 1-parametric Abelian group. The Dirac basis of generators $\Lambda_k$, being of Gell-Mann type, substantially differs from the basis $\lambda_i$ used in the literature on $SU(4)$ group, formulas relating them are found – they permit to separate $SU(3)$ subgroup in $SU(4)$. Special way to list 15 Dirac generators of $GL(4,C)$ can be used $\{\Lambda_k\}=\{\alpha_i \oplus\beta_j\oplus(\alpha_i V\beta_j=\mathbf K\oplus\mathbf L\oplus\mathbf M)\}$, which permit to factorize $SU(4)$ transformations according to $S=e^{i\vec{a}\vec{\alpha}}e^{i\vec{b}\vec{\beta}}e^{i{\mathbf k}{\mathbf K}}e^{i{\mathbf l}{\mathbf L}}e^{i{\mathbf m}{\mathbf M}}$, where two first factors commute with each other and are isomorphic to $SU(2)$ group, the three last ones are 3-parametric groups, each of them consisting of three Abelian commuting unitary subgroups. Besides, the structure of fifteen Dirac matrices $\Lambda_k$ permits to separate twenty 3-parametric subgroups in $SU(4)$ isomorphic to $SU(2)$; those subgroups might be used as bigger elementary blocks in constructing of a general transformation $SU(4)$. It is shown how one can specify the present approach for the pseudounitary group $SU(2,2)$ and $SU(3,1)$.
Keywords: Dirac matrices; linear group; unitary group; Gell-Mann basis; parametrization.
Received: September 19, 2007; in final form January 24, 2008; Published online February 19, 2008
Bibliographic databases:
Document Type: Article
Language: English
Citation: Victor M. Red'kov, Andrei A. Bogush, Natalia G. Tokarevskaya, “On Parametrization of the Linear $\mathrm{GL}(4,C)$ and Unitary $\mathrm{SU}(4)$ Groups in Terms of Dirac Matrices”, SIGMA, 4 (2008), 021, 46 pp.
Citation in format AMSBIB
\Bibitem{RedBogTok08}
\by Victor M.~Red'kov, Andrei A.~Bogush, Natalia G.~Tokarevskaya
\paper On Parametrization of the Linear $\mathrm{GL}(4,C)$ and Unitary $\mathrm{SU}(4)$ Groups in Terms of Dirac
Matrices
\jour SIGMA
\yr 2008
\vol 4
\papernumber 021
\totalpages 46
\mathnet{http://mi.mathnet.ru/sigma274}
\crossref{https://doi.org/10.3842/SIGMA.2008.021}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2393306}
\zmath{https://zbmath.org/?q=an:05241661}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84856492321}
Linking options:
  • https://www.mathnet.ru/eng/sigma274
  • https://www.mathnet.ru/eng/sigma/v4/p21
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:273
    Full-text PDF :69
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024