Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2008, Volume 4, 015, 22 pp.
DOI: https://doi.org/10.3842/SIGMA.2008.015
(Mi sigma268)
 

This article is cited in 11 scientific papers (total in 11 papers)

Quasi-Linear Algebras and Integrability (the Heisenberg Picture)

Luc Vineta, Alexei Zhedanovb

a Université de Montréal PO Box 6128, Station Centre-ville, Montréal QC H3C 3J7, Canada
b Donetsk Institute for Physics and Technology, Donetsk 83114, Ukraine
References:
Abstract: We study Poisson and operator algebras with the “quasi-linear property” from the Heisenberg picture point of view. This means that there exists a set of one-parameter groups yielding an explicit expression of dynamical variables (operators) as functions of “time” $t$. We show that many algebras with nonlinear commutation relations such as the Askey–Wilson, $q$-Dolan–Grady and others satisfy this property. This provides one more (explicit Heisenberg evolution) interpretation of the corresponding integrable systems.
Keywords: Lie algebras; Poisson algebras; nonlinear algebras; Askey–Wilson algebra; Dolan–Grady relations.
Received: November 16, 2007; in final form January 19, 2008; Published online February 6, 2008
Bibliographic databases:
Document Type: Article
MSC: 17B63; 17B37; 47L90
Language: English
Citation: Luc Vinet, Alexei Zhedanov, “Quasi-Linear Algebras and Integrability (the Heisenberg Picture)”, SIGMA, 4 (2008), 015, 22 pp.
Citation in format AMSBIB
\Bibitem{VinZhe08}
\by Luc Vinet, Alexei Zhedanov
\paper Quasi-Linear Algebras and Integrability (the Heisenberg Picture)
\jour SIGMA
\yr 2008
\vol 4
\papernumber 015
\totalpages 22
\mathnet{http://mi.mathnet.ru/sigma268}
\crossref{https://doi.org/10.3842/SIGMA.2008.015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2393312}
\zmath{https://zbmath.org/?q=an:1136.17019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267267800015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055186301}
Linking options:
  • https://www.mathnet.ru/eng/sigma268
  • https://www.mathnet.ru/eng/sigma/v4/p15
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :50
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024