Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 114, 10 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.114
(Mi sigma240)
 

This article is cited in 4 scientific papers (total in 4 papers)

Some Sharp $L^2$ Inequalities for Dirac Type Operators

Alexander Balinskya, John Ryanb

a Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF 24 4AG, UK
b Department of Mathematics, University of Arkansas, Fayetteville, AR 72701, USA
Full-text PDF (239 kB) Citations (4)
References:
Abstract: We use the spectra of Dirac type operators on the sphere $S^n$ to produce sharp $L^2$ inequalities on the sphere. These operators include the Dirac operator on $S^n$, the conformal Laplacian and Paenitz operator. We use the Cayley transform, or stereographic projection, to obtain similar inequalities for powers of the Dirac operator and their inverses in $\mathbb R^n$.
Keywords: Dirac operator; Clifford algebra; conformal Laplacian; Paenitz operator.
Received: August 31, 2007; in final form November 14, 2007; Published online November 25, 2007
Bibliographic databases:
Document Type: Article
MSC: 15A66; 26D10; 34L40
Language: English
Citation: Alexander Balinsky, John Ryan, “Some Sharp $L^2$ Inequalities for Dirac Type Operators”, SIGMA, 3 (2007), 114, 10 pp.
Citation in format AMSBIB
\Bibitem{BalRya07}
\by Alexander Balinsky, John Ryan
\paper Some Sharp $L^2$ Inequalities for Dirac Type Operators
\jour SIGMA
\yr 2007
\vol 3
\papernumber 114
\totalpages 10
\mathnet{http://mi.mathnet.ru/sigma240}
\crossref{https://doi.org/10.3842/SIGMA.2007.114}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2366908}
\zmath{https://zbmath.org/?q=an:1141.15026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200114}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236560}
Linking options:
  • https://www.mathnet.ru/eng/sigma240
  • https://www.mathnet.ru/eng/sigma/v3/p114
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :49
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024