Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 111, 17 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.111
(Mi sigma237)
 

This article is cited in 10 scientific papers (total in 10 papers)

Curved Casimir Operators and the BGG Machinery

Andreas Čapab, Vladimír Soucekc

a International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, A-1090 Wien, Austria
b Fakultät für Mathematik, Universität Wien, Nordbergstr. 15, A-1090 Wien, Austria
c Mathematical Institute, Charles University, Sokolovská 83, Praha, Czech Republic
References:
Abstract: We prove that the Casimir operator acting on sections of a homogeneous vector bundle over a generalized flag manifold naturally extends to an invariant differential operator on arbitrary parabolic geometries. We study some properties of the resulting invariant operators and compute their action on various special types of natural bundles. As a first application, we give a very general construction of splitting operators for parabolic geometries. Then we discuss the curved Casimir operators on differential forms with values in a tractor bundle, which nicely relates to the machinery of BGG sequences. This also gives a nice interpretation of the resolution of a finite dimensional representation by (spaces of smooth vectors in) principal series representations provided by a BGG sequence.
Keywords: induced representation; parabolic geometry; invariant differential operator; Casimir operator; tractor bundle; BGG sequence.
Received: August 24, 2007; in final form November 16, 2007; Published online November 22, 2007
Bibliographic databases:
Document Type: Article
Language: English
Citation: Andreas Čap, Vladimír Soucek, “Curved Casimir Operators and the BGG Machinery”, SIGMA, 3 (2007), 111, 17 pp.
Citation in format AMSBIB
\Bibitem{CapSou07}
\by Andreas {\v C}ap, Vladim{\'\i}r Soucek
\paper Curved Casimir Operators and the BGG Machinery
\jour SIGMA
\yr 2007
\vol 3
\papernumber 111
\totalpages 17
\mathnet{http://mi.mathnet.ru/sigma237}
\crossref{https://doi.org/10.3842/SIGMA.2007.111}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2366911}
\zmath{https://zbmath.org/?q=an:1142.22008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200111}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-83055161915}
Linking options:
  • https://www.mathnet.ru/eng/sigma237
  • https://www.mathnet.ru/eng/sigma/v3/p111
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :50
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024