Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 110, 12 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.110
(Mi sigma236)
 

This article is cited in 2 scientific papers (total in 2 papers)

Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem

Marcos Moshinskya, Emerson Sadurnía, Adolfo del Campob

a Instituto de Física Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México D.F., México
b Departamento de Química-Física, Universidad del País Vasco, Apdo. 644, Bilbao, Spain
Full-text PDF (272 kB) Citations (2)
References:
Abstract: A direct procedure for determining the propagator associated with a quantum mechanical problem was given by the Path Integration Procedure of Feynman. The Green function, which is the Fourier Transform with respect to the time variable of the propagator, can be derived later. In our approach, with the help of a Laplace transform, a direct way to get the energy dependent Green function is presented, and the propagator can be obtained later with an inverse Laplace transform. The method is illustrated through simple one dimensional examples and for time independent potentials, though it can be generalized to the derivation of more complicated propagators.
Keywords: propagator; Green functions; harmonic oscillator.
Received: August 21, 2007; in final form November 13, 2007; Published online November 22, 2007
Bibliographic databases:
Document Type: Article
MSC: 81V35; 81Q05
Language: English
Citation: Marcos Moshinsky, Emerson Sadurní, Adolfo del Campo, “Alternative Method for Determining the Feynman Propagator of a Non-Relativistic Quantum Mechanical Problem”, SIGMA, 3 (2007), 110, 12 pp.
Citation in format AMSBIB
\Bibitem{MosSadDel07}
\by Marcos Moshinsky, Emerson Sadurn{\'\i}, Adolfo del Campo
\paper Alternative Method for Determining the Feynman Propagator of a~Non-Relativistic Quantum Mechanical Problem
\jour SIGMA
\yr 2007
\vol 3
\papernumber 110
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma236}
\crossref{https://doi.org/10.3842/SIGMA.2007.110}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2366912}
\zmath{https://zbmath.org/?q=an:1136.81428}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200110}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234582}
Linking options:
  • https://www.mathnet.ru/eng/sigma236
  • https://www.mathnet.ru/eng/sigma/v3/p110
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:364
    Full-text PDF :59
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024