Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 109, 24 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.109
(Mi sigma235)
 

Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions

Mélisande Fortin Boisvert

Department of Mathematics and Statistics, McGill University, Montréal, Canada, H3A 2K6
References:
Abstract: The main contribution of our paper is to give a partial classification of the quasi-exactly solvable Lie algebras of first order differential operators in three variables, and to show how this can be applied to the construction of new quasi-exactly solvable Schrödinger operators in three dimensions.
Keywords: quasi-exact solvability; Schrödinger operators; Lie algebras of first order differential operators; three dimensional manifolds.
Received: October 1, 2007; in final form November 2, 2007; Published online November 21, 2007
Bibliographic databases:
Document Type: Article
MSC: 81Q70; 22E70; 53C80
Language: English
Citation: Mélisande Fortin Boisvert, “Quasi-Exactly Solvable Schrödinger Operators in Three Dimensions”, SIGMA, 3 (2007), 109, 24 pp.
Citation in format AMSBIB
\Bibitem{For07}
\by M\'elisande Fortin Boisvert
\paper Quasi-Exactly Solvable Schr\"odinger Operators in Three Dimensions
\jour SIGMA
\yr 2007
\vol 3
\papernumber 109
\totalpages 24
\mathnet{http://mi.mathnet.ru/sigma235}
\crossref{https://doi.org/10.3842/SIGMA.2007.109}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2368998}
\zmath{https://zbmath.org/?q=an:1136.81038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200109}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234865}
Linking options:
  • https://www.mathnet.ru/eng/sigma235
  • https://www.mathnet.ru/eng/sigma/v3/p109
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :47
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024