Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 105, 13 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.105
(Mi sigma231)
 

This article is cited in 15 scientific papers (total in 15 papers)

Wavelet-Based Quantum Field Theory

Mikhail V. Altaiskyab

a Space Research Institute RAS, 84/32 Profsoyuznaya Str., Moscow, 117997, Russia
b Joint Institute for Nuclear Research, Dubna, 141980, Russia
References:
Abstract: The Euclidean quantum field theory for the fields $\phi_{\Delta x}(x)$, which depend on both the position $x$ and the resolution $\Delta x$, constructed in <i>SIGMA</i> <b>2</b> (2006), 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.
Keywords: wavelets; quantum field theory; regularisation.
Received: August 15, 2007; in final form November 3, 2007; Published online November 11, 2007
Bibliographic databases:
Document Type: Article
MSC: 42C40; 37E20
Language: English
Citation: Mikhail V. Altaisky, “Wavelet-Based Quantum Field Theory”, SIGMA, 3 (2007), 105, 13 pp.
Citation in format AMSBIB
\Bibitem{Alt07}
\by Mikhail V.~Altaisky
\paper Wavelet-Based Quantum Field Theory
\jour SIGMA
\yr 2007
\vol 3
\papernumber 105
\totalpages 13
\mathnet{http://mi.mathnet.ru/sigma231}
\crossref{https://doi.org/10.3842/SIGMA.2007.105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2366917}
\zmath{https://zbmath.org/?q=an:1132.42315}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200105}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889236940}
Linking options:
  • https://www.mathnet.ru/eng/sigma231
  • https://www.mathnet.ru/eng/sigma/v3/p105
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :63
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024