Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 102, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.102
(Mi sigma228)
 

This article is cited in 2 scientific papers (total in 2 papers)

Translation to Bundle Operators

Thomas P. Bransona, Doojin Hongb

a Deceased
b Department of Mathematics, University of North Dakota, Grand Forks ND 58202, USA
Full-text PDF (213 kB) Citations (2)
References:
Abstract: We give explicit formulas for conformally invariant operators with leading term an $m$-th power of Laplacian on the product of spheres with the natural pseudo-Riemannian product metric for all $m$.
Keywords: conformally invariant operators; pseudo-Riemannian product of shperes; Fefferman–Graham ambient space; intertwining operator of the conformal group $O(p+1,q+1)$.
Received: August 31, 2007; in final form October 24, 2007; Published online October 31, 2007
Bibliographic databases:
Document Type: Article
MSC: 53A30; 53C50
Language: English
Citation: Thomas P. Branson, Doojin Hong, “Translation to Bundle Operators”, SIGMA, 3 (2007), 102, 14 pp.
Citation in format AMSBIB
\Bibitem{BraHon07}
\by Thomas P.~Branson, Doojin Hong
\paper Translation to Bundle Operators
\jour SIGMA
\yr 2007
\vol 3
\papernumber 102
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma228}
\crossref{https://doi.org/10.3842/SIGMA.2007.102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2366920}
\zmath{https://zbmath.org/?q=an:1153.53052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200102}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234596}
Linking options:
  • https://www.mathnet.ru/eng/sigma228
  • https://www.mathnet.ru/eng/sigma/v3/p102
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:143
    Full-text PDF :43
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024