Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 101, 6 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.101
(Mi sigma227)
 

This article is cited in 2 scientific papers (total in 2 papers)

Toeplitz Operators, Kähler Manifolds, and Line Bundles

Tatyana Foth

Department of Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada
Full-text PDF (209 kB) Citations (2)
References:
Abstract: This is a survey paper. We discuss Toeplitz operators in Kähler geometry, with applications to geometric quantization, and review some recent developments.
Keywords: Kähler manifolds; holomorphic line bundles; geometric quantization; Toeplitz operators.
Received: August 23, 2007; in final form October 23, 2007; Published online October 26, 2007
Bibliographic databases:
Document Type: Article
MSC: 32Q15; 53D50
Language: English
Citation: Tatyana Foth, “Toeplitz Operators, Kähler Manifolds, and Line Bundles”, SIGMA, 3 (2007), 101, 6 pp.
Citation in format AMSBIB
\Bibitem{Fot07}
\by Tatyana Foth
\paper Toeplitz Operators, K\"ahler Manifolds, and Line Bundles
\jour SIGMA
\yr 2007
\vol 3
\papernumber 101
\totalpages 6
\mathnet{http://mi.mathnet.ru/sigma227}
\crossref{https://doi.org/10.3842/SIGMA.2007.101}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2366921}
\zmath{https://zbmath.org/?q=an:1135.32020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200101}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889237037}
Linking options:
  • https://www.mathnet.ru/eng/sigma227
  • https://www.mathnet.ru/eng/sigma/v3/p101
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:177
    Full-text PDF :43
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024