Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 100, 21 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.100
(Mi sigma226)
 

This article is cited in 23 scientific papers (total in 23 papers)

Conformal Dirichlet–Neumann Maps and Poincaré–Einstein Manifolds

A. Rod Gover

Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1, New Zealand
References:
Abstract: A conformal description of Poincaré–Einstein manifolds is developed: these structures are seen to be a special case of a natural weakening of the Einstein condition termed an almost Einstein structure. This is used for two purposes: to shed light on the relationship between the scattering construction of Graham–Zworski and the higher order conformal Dirichlet–Neumann maps of Branson and the author; to sketch a new construction of non-local (Dirichlet–to–Neumann type) conformal operators between tensor bundles.
Keywords: conformal differential geometry; Dirichlet–to–Neumann maps.
Received: October 7, 2007; Published online October 21, 2007
Bibliographic databases:
Document Type: Article
MSC: 58J40; 53A30; 58J32
Language: English
Citation: A. Rod Gover, “Conformal Dirichlet–Neumann Maps and Poincaré–Einstein Manifolds”, SIGMA, 3 (2007), 100, 21 pp.
Citation in format AMSBIB
\Bibitem{Gov07}
\by A.~Rod Gover
\paper Conformal Dirichlet--Neumann Maps and Poincar\'e--Einstein Manifolds
\jour SIGMA
\yr 2007
\vol 3
\papernumber 100
\totalpages 21
\mathnet{http://mi.mathnet.ru/sigma226}
\crossref{https://doi.org/10.3842/SIGMA.2007.100}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2366922}
\zmath{https://zbmath.org/?q=an:1145.53018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200100}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234724}
Linking options:
  • https://www.mathnet.ru/eng/sigma226
  • https://www.mathnet.ru/eng/sigma/v3/p100
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:244
    Full-text PDF :76
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024