Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 097, 15 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.097
(Mi sigma223)
 

This article is cited in 21 scientific papers (total in 21 papers)

Differential Invariants of Conformal and Projective Surfaces

Evelyne Huberta, Peter J. Olverb

a INRIA, 06902 Sophia Antipolis, France
b School of Mathematics, University of Minnesota, Minneapolis 55455, USA
References:
Abstract: We show that, for both the conformal and projective groups, all the differential invariants of a generic surface in three-dimensional space can be written as combinations of the invariant derivatives of a single differential invariant. The proof is based on the equivariant method of moving frames.
Keywords: conformal differential geometry; projective differential geometry; differential invariants; moving frame; syzygy; differential algebra.
Received: August 15, 2007; in final form September 24, 2007; Published online October 2, 2007
Bibliographic databases:
Document Type: Article
MSC: 14L30; 70G65;
Language: English
Citation: Evelyne Hubert, Peter J. Olver, “Differential Invariants of Conformal and Projective Surfaces”, SIGMA, 3 (2007), 097, 15 pp.
Citation in format AMSBIB
\Bibitem{HubOlv07}
\by Evelyne Hubert, Peter J.~Olver
\paper Differential Invariants of Conformal and Projective Surfaces
\jour SIGMA
\yr 2007
\vol 3
\papernumber 097
\totalpages 15
\mathnet{http://mi.mathnet.ru/sigma223}
\crossref{https://doi.org/10.3842/SIGMA.2007.097}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2366925}
\zmath{https://zbmath.org/?q=an:1141.53010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200097}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234709}
Linking options:
  • https://www.mathnet.ru/eng/sigma223
  • https://www.mathnet.ru/eng/sigma/v3/p97
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:277
    Full-text PDF :357
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024