Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 084, 14 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.084
(Mi sigma210)
 

This article is cited in 7 scientific papers (total in 7 papers)

Monogenic Functions in Conformal Geometry

Michael Eastwooda, John Ryanb

a Department of Mathematics, University of Adelaide, SA 5005, Australia
b Department of Mathematics, University of Arkansas, Fayetteville, AR 72701, USA
Full-text PDF (262 kB) Citations (7)
References:
Abstract: Monogenic functions are basic to Clifford analysis. On Euclidean space they are defined as smooth functions with values in the corresponding Clifford algebra satisfying a certain system of first order differential equations, usually referred to as the Dirac equation. There are two equally natural extensions of these equations to a Riemannian spin manifold only one of which is conformally invariant. We present a straightforward exposition.
Keywords: Clifford analysis; monogenic functions; Dirac operator; conformal invariance.
Received: August 29, 2007; Published online August 30, 2007
Bibliographic databases:
Document Type: Article
MSC: 53A30; 58J70; 15A66
Language: English
Citation: Michael Eastwood, John Ryan, “Monogenic Functions in Conformal Geometry”, SIGMA, 3 (2007), 084, 14 pp.
Citation in format AMSBIB
\Bibitem{EasRya07}
\by Michael Eastwood, John Ryan
\paper Monogenic Functions in Conformal Geometry
\jour SIGMA
\yr 2007
\vol 3
\papernumber 084
\totalpages 14
\mathnet{http://mi.mathnet.ru/sigma210}
\crossref{https://doi.org/10.3842/SIGMA.2007.084}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2366938}
\zmath{https://zbmath.org/?q=an:1133.53032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200084}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889234592}
Linking options:
  • https://www.mathnet.ru/eng/sigma210
  • https://www.mathnet.ru/eng/sigma/v3/p84
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:267
    Full-text PDF :52
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024