Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2005, Volume 1, 021, 7 pp.
DOI: https://doi.org/10.3842/SIGMA.2005.021
(Mi sigma21)
 

This article is cited in 2 scientific papers (total in 2 papers)

Pachner Move $3\to 3$ and Affine Volume-Preserving Geometry in $\mathbb R^3$

Igor G. Korepanov

South Ural State University, 76 Lenin Ave., 454080 Chelyabinsk, Russia
Full-text PDF (175 kB) Citations (2)
References:
Abstract: Pachner move $3\to 3$ deals with triangulations of four-dimensional manifolds. We present an algebraic relation corresponding in a natural way to this move and based, a bit paradoxically, on three-dimensional geometry.
Keywords: piecewise-linear topology; Pachner move; algebraic relation; three-dimensional affine geometry.
Received: October 6, 2005; in final form November 21, 2005; Published online November 24, 2005
Bibliographic databases:
Document Type: Article
MSC: 57Q99; 57M27; 57N13
Language: English
Citation: Igor G. Korepanov, “Pachner Move $3\to 3$ and Affine Volume-Preserving Geometry in $\mathbb R^3$”, SIGMA, 1 (2005), 021, 7 pp.
Citation in format AMSBIB
\Bibitem{Kor05}
\by Igor G. Korepanov
\paper Pachner Move $3\to 3$ and Affine Volume-Preserving Geometry in~$\mathbb R^3$
\jour SIGMA
\yr 2005
\vol 1
\papernumber 021
\totalpages 7
\mathnet{http://mi.mathnet.ru/sigma21}
\crossref{https://doi.org/10.3842/SIGMA.2005.021}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2169844}
\zmath{https://zbmath.org/?q=an:1101.57011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207064600021}
Linking options:
  • https://www.mathnet.ru/eng/sigma21
  • https://www.mathnet.ru/eng/sigma/v1/p21
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:193
    Full-text PDF :49
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024