Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2024, Volume 20, 073, 34 pp.
DOI: https://doi.org/10.3842/SIGMA.2024.073
(Mi sigma2075)
 

Resurgence of Refined Topological Strings and Dual Partition Functions

Sergey Alexandrova, Marcos Mariñob, Boris Piolinec

a Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, F-34095, Montpellier, France
b Département de Physique Théorique et Section de Mathématiques, Université de Genéve, Genéve, CH-1211 Switzerland
c Laboratoire de Physique Théorique et Hautes Energies (LPTHE), UMR 7589, CNRS-Sorbonne Université, Campus Pierre et Marie Curie, 4 place Jussieu, F-75005 Paris, France
References:
Abstract: We study the resurgent structure of the refined topological string partition function on a non-compact Calabi–Yau threefold, at large orders in the string coupling constant $g_s$ and fixed refinement parameter $\mathsf{b}$. For $\mathsf{b}\neq 1$, the Borel transform admits two families of simple poles, corresponding to integral periods rescaled by $\mathsf{b}$ and $1/\mathsf{b}$. We show that the corresponding Stokes automorphism is expressed in terms of a generalization of the non-compact quantum dilogarithm, and we conjecture that the Stokes constants are determined by the refined Donaldson–Thomas invariants counting spin-$j$ BPS states. This jump in the refined topological string partition function is a special case (unit five-brane charge) of a more general transformation property of wave functions on quantum twisted tori introduced in earlier work by two of the authors. We show that this property follows from the transformation of a suitable refined dual partition function across BPS rays, defined by extending the Moyal star product to the realm of contact geometry.
Keywords: resurgence, topological string theory, Borel resummation, Stokes automorphism.
Funding agency Grant number
European Research Council
810573
Agence Nationale de la Recherche ANR-21-CE31-0021
Engineering and Physical Sciences Research Council EP/R014604/1
The research of MM is supported in part by the ERC-SyG project “Recursive and Exact New Quantum Theory” (ReNewQuantum), which received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program, grant agreement No. 810573. The research of BP is supported by Agence Nationale de la Recherche under contract number ANR-21-CE31-0021. SA and BP would like to thank the Isaac Newton Institute for Mathematical Sciences in Cambridge (supported by EPSRC grant EP/R014604/1), for hospitality during the programme Black holes: bridges between number theory and holographic quantum information where work on this project was undertaken.
Received: December 13, 2023; in final form August 2, 2024; Published online August 6, 2024
Document Type: Article
Language: English
Citation: Sergey Alexandrov, Marcos Mariño, Boris Pioline, “Resurgence of Refined Topological Strings and Dual Partition Functions”, SIGMA, 20 (2024), 073, 34 pp.
Citation in format AMSBIB
\Bibitem{AleMarPio24}
\by Sergey~Alexandrov, Marcos~Mari\~no, Boris~Pioline
\paper Resurgence of Refined Topological Strings and Dual Partition Functions
\jour SIGMA
\yr 2024
\vol 20
\papernumber 073
\totalpages 34
\mathnet{http://mi.mathnet.ru/sigma2075}
\crossref{https://doi.org/10.3842/SIGMA.2024.073}
Linking options:
  • https://www.mathnet.ru/eng/sigma2075
  • https://www.mathnet.ru/eng/sigma/v20/p73
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:16
    Full-text PDF :5
    References:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024