Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2024, Volume 20, 050, 16 pp.
DOI: https://doi.org/10.3842/SIGMA.2024.050
(Mi sigma2052)
 

A Note on BKP for the Kontsevich Matrix Model with Arbitrary Potential

Gaëtan Borota, Raimar Wulkenhaarb

a Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
b Mathematisches Institut, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
References:
Abstract: We exhibit the Kontsevich matrix model with arbitrary potential as a BKP tau-function with respect to polynomial deformations of the potential. The result can be equivalently formulated in terms of Cartan–Plücker relations of certain averages of Schur $Q$-function. The extension of a Pfaffian integration identity of de Bruijn to singular kernels is instrumental in the derivation of the result.
Keywords: BKP hierarchy, matrix models, classical integrability.
Funding agency Grant number
Deutsche Forschungsgemeinschaft 427320536
R.W. was supported by the Cluster of Excellence Mathematics Münster and the CRC 1442 Geometry: Deformations and Rigidity (Funded by the Deutsche Forschungsgemeinschaft Project-ID 427320536 – SFB 1442, as well as under Germany’s Excellence Strategy EXC 2044 390685587, Mathematics Münster: Dynamics – Geometry – Structure).
Received: January 3, 2024; in final form June 1, 2024; Published online June 11, 2024
Document Type: Article
MSC: 37K10, 37K20, 15A15
Language: English
Citation: Gaëtan Borot, Raimar Wulkenhaar, “A Note on BKP for the Kontsevich Matrix Model with Arbitrary Potential”, SIGMA, 20 (2024), 050, 16 pp.
Citation in format AMSBIB
\Bibitem{BorWul24}
\by Ga\"etan~Borot, Raimar~Wulkenhaar
\paper A Note on BKP for the Kontsevich Matrix Model with Arbitrary Potential
\jour SIGMA
\yr 2024
\vol 20
\papernumber 050
\totalpages 16
\mathnet{http://mi.mathnet.ru/sigma2052}
\crossref{https://doi.org/10.3842/SIGMA.2024.050}
Linking options:
  • https://www.mathnet.ru/eng/sigma2052
  • https://www.mathnet.ru/eng/sigma/v20/p50
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:21
    Full-text PDF :7
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024