Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2024, Volume 20, 047, 70 pp.
DOI: https://doi.org/10.3842/SIGMA.2024.047
(Mi sigma2049)
 

Unrestricted Quantum Moduli Algebras, II: Noetherianity and Simple Fraction Rings at Roots of 1

Stéphane Baseilhac, Philippe Roche

IMAG, Univ Montpellier, CNRS, Montpellier, France
References:
Abstract: We prove that the quantum graph algebra and the quantum moduli algebra associated to a punctured sphere and complex semisimple Lie algebra $\mathfrak{g}$ are Noetherian rings and finitely generated rings over $\mathbb{C}(q)$. Moreover, we show that these two properties still hold on $\mathbb{C}\big[q,q^{-1}\big]$ for the integral version of the quantum graph algebra. We also study the specializations $\mathcal{L}_{0,n}^\epsilon$ of the quantum graph algebra at a root of unity $\epsilon$ of odd order, and show that $\mathcal{L}_{0,n}^\epsilon$ and its invariant algebra under the quantum group $U_\epsilon(\mathfrak{g})$ have classical fraction algebras which are central simple algebras of PI degrees that we compute.
Keywords: quantum groups, invariant theory, character varieties, skein algebras, TQFT.
Received: May 11, 2023; in final form May 7, 2024; Published online June 6, 2024
Document Type: Article
Language: English
Citation: Stéphane Baseilhac, Philippe Roche, “Unrestricted Quantum Moduli Algebras, II: Noetherianity and Simple Fraction Rings at Roots of 1”, SIGMA, 20 (2024), 047, 70 pp.
Citation in format AMSBIB
\Bibitem{BasRoc24}
\by St\'ephane~Baseilhac, Philippe~Roche
\paper Unrestricted Quantum Moduli Algebras, II: Noetherianity and Simple Fraction Rings at Roots of~1
\jour SIGMA
\yr 2024
\vol 20
\papernumber 047
\totalpages 70
\mathnet{http://mi.mathnet.ru/sigma2049}
\crossref{https://doi.org/10.3842/SIGMA.2024.047}
Linking options:
  • https://www.mathnet.ru/eng/sigma2049
  • https://www.mathnet.ru/eng/sigma/v20/p47
    Cycle of papers
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:19
    Full-text PDF :9
    References:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024