Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2024, Volume 20, 039, 19 pp.
DOI: https://doi.org/10.3842/SIGMA.2024.039
(Mi sigma2041)
 

Entropy for Monge–Ampère Measures in the Prescribed Singularities Setting

Eleonora Di Nezzaab, Stefano Trapanic, Antonio Trusianid

a DMA, Ecole Normale Supérieure, Université PSL, CNRS, 45 Rue d’Ulm, 75005 Paris, France
b IMJ-PRG, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
c Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
d Chalmers University of Technology, Chalmers tvärgata 3, 41296 Göteborg, Sweden
References:
Abstract: In this note, we generalize the notion of entropy for potentials in a relative full Monge–Ampère mass $\mathcal{E}(X, \theta, \phi)$, for a model potential $\phi$. We then investigate stability properties of this condition with respect to blow-ups and perturbation of the cohomology class. We also prove a Moser–Trudinger type inequality with general weight and we show that functions with finite entropy lie in a relative energy class $\mathcal{E}^{\frac{n}{n-1}}(X, \theta, \phi)$ (provided $n>1$), while they have the same singularities of $\phi$ when $n=1$.
Keywords: Kähler manifolds, Monge–Ampère energy, entropy, big classes.
Funding agency Grant number
Agence Nationale de la Recherche ANR-22-ERCS-0004-02
ANR-21- CE40-0011 JCJC MARGE
PRIN 2017JZ2SW5
Italian Ministry of Education, University and Research 2018–2022 CUP E83C18000100006
2023–2027 CUP E83C23000330006
Knut and Alice Wallenbergs Foundation
The first author is supported by the project SiGMA ANR-22-ERCS-0004-02 and by the ANR-21-CE40-0011 JCJC MARGE. The second author is partially supported by PRIN Real and Complex Manifolds: Topology, Geometry and Holomorphic Dynamics no. 2017JZ2SW5, and by MIUR Excellence Department Projects awarded to the Department of Mathematics, University of Rome Tor Vergata, 2018–2022 CUP E83C18000100006, and 2023–2027 CUP E83C23000330006. The third author is supported by the “Knut and Alice Wallenberg Foundation”.
Received: October 16, 2023; in final form May 4, 2024; Published online May 8, 2024
Document Type: Article
Language: English
Citation: Eleonora Di Nezza, Stefano Trapani, Antonio Trusiani, “Entropy for Monge–Ampère Measures in the Prescribed Singularities Setting”, SIGMA, 20 (2024), 039, 19 pp.
Citation in format AMSBIB
\Bibitem{Di TraTru24}
\by Eleonora~Di Nezza, Stefano~Trapani, Antonio~Trusiani
\paper Entropy for Monge--Amp\`ere Measures in the Prescribed Singularities Setting
\jour SIGMA
\yr 2024
\vol 20
\papernumber 039
\totalpages 19
\mathnet{http://mi.mathnet.ru/sigma2041}
\crossref{https://doi.org/10.3842/SIGMA.2024.039}
Linking options:
  • https://www.mathnet.ru/eng/sigma2041
  • https://www.mathnet.ru/eng/sigma/v20/p39
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:20
    Full-text PDF :4
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024