|
Entropy for Monge–Ampère Measures in the Prescribed Singularities Setting
Eleonora Di Nezzaab, Stefano Trapanic, Antonio Trusianid a DMA, Ecole Normale Supérieure, Université PSL, CNRS,
45 Rue d’Ulm, 75005 Paris, France
b IMJ-PRG, Sorbonne Université, 4 place Jussieu, 75005 Paris, France
c Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
d Chalmers University of Technology, Chalmers tvärgata 3, 41296 Göteborg, Sweden
Abstract:
In this note, we generalize the notion of entropy for potentials in a relative full Monge–Ampère mass $\mathcal{E}(X, \theta, \phi)$, for a model potential $\phi$. We then investigate stability properties of this condition with respect to blow-ups and perturbation of the cohomology class. We also prove a Moser–Trudinger type inequality with general weight and we show that functions with finite entropy lie in a relative energy class $\mathcal{E}^{\frac{n}{n-1}}(X, \theta, \phi)$ (provided $n>1$), while they have the same singularities of $\phi$ when $n=1$.
Keywords:
Kähler manifolds, Monge–Ampère energy, entropy, big classes.
Received: October 16, 2023; in final form May 4, 2024; Published online May 8, 2024
Citation:
Eleonora Di Nezza, Stefano Trapani, Antonio Trusiani, “Entropy for Monge–Ampère Measures in the Prescribed Singularities Setting”, SIGMA, 20 (2024), 039, 19 pp.
Linking options:
https://www.mathnet.ru/eng/sigma2041 https://www.mathnet.ru/eng/sigma/v20/p39
|
Statistics & downloads: |
Abstract page: | 20 | Full-text PDF : | 4 | References: | 13 |
|