Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2007, Volume 3, 078, 20 pp.
DOI: https://doi.org/10.3842/SIGMA.2007.078
(Mi sigma204)
 

This article is cited in 11 scientific papers (total in 11 papers)

Paths and Tableaux Descriptions of Jacobi–Trudi Determinant Associated with Quantum Affine Algebra of Type $C_n$

Wakako Nakai, Tomoki Nakanishi

Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan
References:
Abstract: We study the Jacobi–Trudi-type determinant which is conjectured to be the $q$-character of a certain, in many cases irreducible, finite-dimensional representation of the quantum affine algebra of type $C_n$. Like the $D_n$ case studied by the authors recently, applying the Gessel–Viennot path method with an additional involution and a deformation of paths, we obtain an expression by apositive sum over a set of tuples of paths, which is naturally translated into the one over a set of tableaux on a skew diagram.
Keywords: quantum group; $q$-character; lattice path; Young tableau.
Received: May 3, 2007; in final form July 4, 2007; Published online July 18, 2007
Bibliographic databases:
Document Type: Article
MSC: 17B37; 05E15
Language: English
Citation: Wakako Nakai, Tomoki Nakanishi, “Paths and Tableaux Descriptions of Jacobi–Trudi Determinant Associated with Quantum Affine Algebra of Type $C_n$”, SIGMA, 3 (2007), 078, 20 pp.
Citation in format AMSBIB
\Bibitem{NakNak07}
\by Wakako Nakai, Tomoki Nakanishi
\paper Paths and Tableaux Descriptions of Jacobi--Trudi Determinant Associated with Quantum Affine Algebra of Type $C_n$
\jour SIGMA
\yr 2007
\vol 3
\papernumber 078
\totalpages 20
\mathnet{http://mi.mathnet.ru/sigma204}
\crossref{https://doi.org/10.3842/SIGMA.2007.078}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2322805}
\zmath{https://zbmath.org/?q=an:1142.17009}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000207065200078}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84889235696}
Linking options:
  • https://www.mathnet.ru/eng/sigma204
  • https://www.mathnet.ru/eng/sigma/v3/p78
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :47
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024