Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2024, Volume 20, 037, 19 pp.
DOI: https://doi.org/10.3842/SIGMA.2024.037
(Mi sigma2039)
 

Compatible Poisson Brackets Associated with Elliptic Curves in $G(2,5)$

Nikita Markaryana, Alexander Polishchukbc

a Université de Strasbourg, France
b National Research University Higher School of Economics, Moscow, Russia
c Department of Mathematics, University of Oregon, Eugene, OR 97403, USA
References:
Abstract: We prove that a pair of Feigin–Odesskii Poisson brackets on ${\mathbb P}^4$ associated with elliptic curves given as linear sections of the Grassmannian $G(2,5)$ are compatible if and only if this pair of elliptic curves is contained in a del Pezzo surface obtained as a linear section of $G(2,5)$.
Keywords: Poisson bracket, bi-Hamiltonian structure, elliptic curve, triple Massey products.
Received: December 5, 2023; in final form April 27, 2024; Published online May 7, 2024
Document Type: Article
MSC: 14H52, 53D17
Language: English
Citation: Nikita Markaryan, Alexander Polishchuk, “Compatible Poisson Brackets Associated with Elliptic Curves in $G(2,5)$”, SIGMA, 20 (2024), 037, 19 pp.
Citation in format AMSBIB
\Bibitem{MarPol24}
\by Nikita~Markaryan, Alexander~Polishchuk
\paper Compatible Poisson Brackets Associated with Elliptic Curves in $G(2,5)$
\jour SIGMA
\yr 2024
\vol 20
\papernumber 037
\totalpages 19
\mathnet{http://mi.mathnet.ru/sigma2039}
\crossref{https://doi.org/10.3842/SIGMA.2024.037}
Linking options:
  • https://www.mathnet.ru/eng/sigma2039
  • https://www.mathnet.ru/eng/sigma/v20/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:21
    Full-text PDF :9
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024