Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2023, Volume 19, 102, 12 pp.
DOI: https://doi.org/10.3842/SIGMA.2023.102
(Mi sigma1997)
 

A Note on the Spectrum of Magnetic Dirac Operators

Nelia Charalambousa, Nadine Grosseb

a Department of Mathematics and Statistics, University of Cyprus, Nicosia, 1678, Cyprus
b Mathematisches Institut, Universität Freiburg, 79100 Freiburg, Germany
References:
Abstract: In this article, we study the spectrum of the magnetic Dirac operator, and the magnetic Dirac operator with potential over complete Riemannian manifolds. We find sufficient conditions on the potentials as well as the manifold so that the spectrum is either maximal, or discrete. We also show that magnetic Dirac operators can have a dense set of eigenvalues.
Keywords: Dirac operator, potentials, spectrum.
Received: June 2, 2023; in final form December 14, 2023; Published online December 22, 2023
Document Type: Article
MSC: 58J50, 35P05, 53C27
Language: English
Citation: Nelia Charalambous, Nadine Grosse, “A Note on the Spectrum of Magnetic Dirac Operators”, SIGMA, 19 (2023), 102, 12 pp.
Citation in format AMSBIB
\Bibitem{ChaGro23}
\by Nelia~Charalambous, Nadine~Grosse
\paper A Note on the Spectrum of Magnetic Dirac Operators
\jour SIGMA
\yr 2023
\vol 19
\papernumber 102
\totalpages 12
\mathnet{http://mi.mathnet.ru/sigma1997}
\crossref{https://doi.org/10.3842/SIGMA.2023.102}
Linking options:
  • https://www.mathnet.ru/eng/sigma1997
  • https://www.mathnet.ru/eng/sigma/v19/p102
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:23
    Full-text PDF :4
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024