|
Jacobi Beta Ensemble and $b$-Hurwitz Numbers
Giulio Ruzzaab a Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Campo Grande Edifício C6, 1749-016, Lisboa, Portugal
b Grupo de Física Matemática, Campo Grande Edifício C6, 1749-016, Lisboa, Portugal
Abstract:
We express correlators of the Jacobi $\beta$ ensemble in terms of (a special case of) $b$-Hurwitz numbers, a deformation of Hurwitz numbers recently introduced by Chapuy and Dołȩga. The proof relies on Kadell's generalization of the Selberg integral. The Laguerre limit is also considered. All the relevant $b$-Hurwitz numbers are interpreted (following Bonzom, Chapuy, and Dołȩga) in terms of colored monotone Hurwitz maps.
Keywords:
beta ensembles, Jack polynomials, Hurwitz numbers, combinatorial maps.
Received: July 3, 2023; in final form November 29, 2023; Published online December 19, 2023
Citation:
Giulio Ruzza, “Jacobi Beta Ensemble and $b$-Hurwitz Numbers”, SIGMA, 19 (2023), 100, 18 pp.
Linking options:
https://www.mathnet.ru/eng/sigma1995 https://www.mathnet.ru/eng/sigma/v19/p100
|
Statistics & downloads: |
Abstract page: | 28 | Full-text PDF : | 2 | References: | 5 |
|