Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2023, Volume 19, 100, 18 pp.
DOI: https://doi.org/10.3842/SIGMA.2023.100
(Mi sigma1995)
 

Jacobi Beta Ensemble and $b$-Hurwitz Numbers

Giulio Ruzzaab

a Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Campo Grande Edifício C6, 1749-016, Lisboa, Portugal
b Grupo de Física Matemática, Campo Grande Edifício C6, 1749-016, Lisboa, Portugal
References:
Abstract: We express correlators of the Jacobi $\beta$ ensemble in terms of (a special case of) $b$-Hurwitz numbers, a deformation of Hurwitz numbers recently introduced by Chapuy and Dołȩga. The proof relies on Kadell's generalization of the Selberg integral. The Laguerre limit is also considered. All the relevant $b$-Hurwitz numbers are interpreted (following Bonzom, Chapuy, and Dołȩga) in terms of colored monotone Hurwitz maps.
Keywords: beta ensembles, Jack polynomials, Hurwitz numbers, combinatorial maps.
Funding agency Grant number
Fundação para a Ciência e a Tecnologia 2022.07810.CEECIND
This work is supported by the FCT grant 2022.07810.CEECIND.
Received: July 3, 2023; in final form November 29, 2023; Published online December 19, 2023
Document Type: Article
MSC: 15B52, 05E05, 05E16
Language: English
Citation: Giulio Ruzza, “Jacobi Beta Ensemble and $b$-Hurwitz Numbers”, SIGMA, 19 (2023), 100, 18 pp.
Citation in format AMSBIB
\Bibitem{Ruz23}
\by Giulio~Ruzza
\paper Jacobi Beta Ensemble and $b$-Hurwitz Numbers
\jour SIGMA
\yr 2023
\vol 19
\papernumber 100
\totalpages 18
\mathnet{http://mi.mathnet.ru/sigma1995}
\crossref{https://doi.org/10.3842/SIGMA.2023.100}
Linking options:
  • https://www.mathnet.ru/eng/sigma1995
  • https://www.mathnet.ru/eng/sigma/v19/p100
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:28
    Full-text PDF :2
    References:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024