|
DG-Enhanced Hecke and KLR Algebras
Ruslan Maksimaua, Pedro Vazb a Laboratoire Analyse Géométrie Modélisation, CY Cergy Paris Université, 2 av. Adolphe Chauvin (Bat. E, 5 ème étage), 95302 Cergy-Pontoise, France
b Institut de Recherche en Mathématique et Physique, Université Catholique de Louvain,
Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
Abstract:
We construct DG-enhanced versions of the degenerate affine Hecke algebra and of the affine Hecke algebra. We extend Brundan–Kleshchev and Rouquier's isomorphism and prove that after completion DG-enhanced versions of affine Hecke algebras (degenerate or nondegenerate) are isomorphic to completed DG-enhanced versions of KLR algebras for suitably defined quivers. As a byproduct, we deduce that these DG-algebras have homologies concentrated in degree zero. These homologies are isomorphic respectively to the degenerate cyclotomic Hecke algebra and the cyclotomic Hecke algebra.
Keywords:
Hecke algebra, KLR algebra, DG-algebra.
Received: March 30, 2023; in final form November 15, 2023; Published online November 22, 2023
Citation:
Ruslan Maksimau, Pedro Vaz, “DG-Enhanced Hecke and KLR Algebras”, SIGMA, 19 (2023), 095, 24 pp.
Linking options:
https://www.mathnet.ru/eng/sigma1990 https://www.mathnet.ru/eng/sigma/v19/p95
|
Statistics & downloads: |
Abstract page: | 30 | Full-text PDF : | 17 | References: | 13 |
|