Symmetry, Integrability and Geometry: Methods and Applications
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



SIGMA:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Symmetry, Integrability and Geometry: Methods and Applications, 2023, Volume 19, 068, 26 pp.
DOI: https://doi.org/10.3842/SIGMA.2023.068
(Mi sigma1963)
 

Moduli Spaces for the Fifth Painlevé Equation

Marius van der Put, Jaap Top

Bernoulli Institute, Nijenborgh 9, 9747 AG Groningen, The Netherlands
References:
Abstract: Isomonodromy for the fifth Painlevé equation ${\rm P}_5$ is studied in detail in the context of certain moduli spaces for connections, monodromy, the Riemann–Hilbert morphism, and Okamoto–Painlevé spaces. This involves explicit formulas for Stokes matrices and parabolic structures. The rank $4$ Lax pair for ${\rm P}_5$, introduced by Noumi–Yamada et al., is shown to be induced by a natural fine moduli space of connections of rank $4$. As a by-product one obtains a polynomial Hamiltonian for ${\rm P}_5$, equivalent to the one of Okamoto.
Keywords: moduli space for linear connections, irregular singularities, Stokes matrices, monodromy spaces, isomonodromic deformations, Painlevé equations.
Received: July 15, 2021; in final form September 7, 2023; Published online September 26, 2023
Document Type: Article
Language: English
Citation: Marius van der Put, Jaap Top, “Moduli Spaces for the Fifth Painlevé Equation”, SIGMA, 19 (2023), 068, 26 pp.
Citation in format AMSBIB
\Bibitem{VanTop23}
\by Marius~van der Put, Jaap~Top
\paper Moduli Spaces for the Fifth Painlev\'e Equation
\jour SIGMA
\yr 2023
\vol 19
\papernumber 068
\totalpages 26
\mathnet{http://mi.mathnet.ru/sigma1963}
\crossref{https://doi.org/10.3842/SIGMA.2023.068}
Linking options:
  • https://www.mathnet.ru/eng/sigma1963
  • https://www.mathnet.ru/eng/sigma/v19/p68
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Symmetry, Integrability and Geometry: Methods and Applications
    Statistics & downloads:
    Abstract page:39
    Full-text PDF :4
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024